The Industry’s Smallest Contactless Current Sensor Featuring Minimum Power Loss from ROHM

Kyoto and Santa Clara, Calif., Dec. 20, 2018 (GLOBE NEWSWIRE) -- ROHM today announced the availability of the industry’s smallest contactless current sensor, the BM14270MUV-LB. It achieves minimum power loss (no heat generation) in an ultra-compact size, making it ideal for industrial equipment and consumer devices that detect operating conditions via current, including battery-driven drones, solar power systems, and servers in data centers requiring high power.

In recent years, the growing awareness of energy conservation and safety worldwide together with environmental regulations require safety countermeasures and power visualization in high power applications such as servers in data centers and solar power systems. This results in an increased demand for current sensors. However, conventional current sensors using Hall elements typically feature large current consumption and low sensitivity, making it necessary to draw current within the sensor itself. As such until now there were no current sensors on the market that provided high reliability and low loss in a compact form factor (3.5mm square).

ROHM developed a current sensor utilizing a high sensitivity low current MI element that allows for completely contactless current detection. The BM14270MUV-LB was developed by combining ROHM’s industry-leading semiconductor production and sensor control technologies with Aichi Steel’s MI (Magneto-Impedance) element. The result is a contactless current sensor that eliminates the need to draw current within the sensor to measure it. The sensor itself consumes very low current (0.07mA – 100x smaller than conventional products) and comes in the industry’s smallest size (3.5mm square). In addition, a disturbance magnetic field cancellation function is included to protect against noise, making shielding unnecessary. Digital output from the built-in A/D converter reduces MCU load, facilitating current monitoring. These features allow users to easily detect the current of virtually any application with high reliability, from compact battery-driven devices to high power industrial equipment.

Going forward, ROHM will continue to contribute to increase comfort and safety of the society by developing high-performance, high reliability sensors demanded by the IoT and industrial equipment markets.

Availability: January 2019 (samples), April 2019 (OEM quantities)

Key Features
1. Contactless current detection achieves greater system reliability with minimum power loss

Conventional products utilizing Hall elements cannot detect current without drawing current into the sensor itself, generating both loss and heat and possibly causing system stoppage in the event the sensor fails or is damaged. In contrast, the BM14270MUV-LB enables contactless current detection by using a high sensitivity MI sensor. The result is no energy loss or heat generation even in high voltage applications, simplifying design and improving system reliability by eliminating the need for isolation.

2. Compact, ultra-low-current design optimized for battery-driven devices

In conventional products, current consumed by the Hall element is large, resulting in a current consumption of around 10mA for Hall-based current sensors. On the other hand, ROHM’s latest product using MI technology achieves an industry-low current consumption of just 0.07mA (0.35mW power consumption at 5V operation) - 100x lower than conventional products. In addition, the BM14270MUV-LB is offered in an ultra-compact 3.5mm square size (vs conventional 6.0mm x 4.9mm sized products), making it ideal for battery-driven devices.

3. Built-in disturbance magnetic field cancellation function eliminates the need for shielding
Typically, in conventional products measurement error occurs due to disturbance magnetic fields, such as those due to geomagnetism (i.e. terrestrial), making it necessary to use shields to block interference. Whereas the BM14270MUV-LB includes a function that cancels disturbance magnetic fields using reciprocal wiring, allowing detection of only the magnetic field of the target current to enable high accuracy measurement without the use of shields.

4. Digital output facilitates current detection
Digital output from the built-in A/D converter reduces MCU load when mounted in servers and other high power applications, enabling easy current detection.

Application Example
- Infrastructure such as power measurement devices, energy storage systems, solar power, and servers
- Mechanical equipment requiring high power, including robots, FA (Factory Automation), and ACs
- Battery-powered devices (i.e. drones)
Ideal for all applications requiring current monitoring.
 

About ROHM Semiconductor
ROHM Semiconductor is an industry leader in system LSI, discrete components and module products, utilizing the latest in semiconductor technology. ROHM's proprietary production system, which includes some of the most advanced automation technology, is a major factor in keeping it at the forefront of the electronic component manufacturing industry. In addition to its development of electronic components, ROHM has also developed its own production system so that it can focus on specific aspects of customized product development. ROHM employs highly skilled engineers with expertise in all aspects of design, development and production. This allows ROHM the flexibility to take on a wide range of applications and projects and the capability to serve valuable clients in the automotive, telecommunication and computer sectors, as well as consumer OEMs.

0_medium_CurrentSensor_1105-02.jpg
Current Detection Methods, Conventional vs. ROHM's New Product


2_medium_CurrentSensor_1105-05.jpg
Current Sensor Power Consumption and Loss Comparison


4_medium_cbm_color.jpg


Attachments

1 | 2  Next Page »
Featured Video
Latest Blog Posts
AdministratorIndustry Predictions
by Administrator
AECCafe Industry Predictions for 2025 – DGG
Sanjay GangalAECCafe Today
by Sanjay Gangal
AEC Industry Predictions for 2025 — vGIS
Jobs
Principal Engineer for Autodesk at San Francisco, California
Senior Principal Software Engineer for Autodesk at San Francisco, California
Sr. GIS Apps Product Engineer for ESRI at Portland, ME, Maine
Mechanical Test Engineer, Platforms Infrastructure for Google at Mountain View, California
Senior Principal Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Sr. GIS Apps Product Engineer for ESRI at Portland, Oregon
Upcoming Events
Consumer Electronics Show 2025 - CES 2025 at Las Vegas Convention Center Las Vegas NV - Jan 7 - 10, 2025
Commercial UAV Expo 2025 at Amsterdam Netherlands - Apr 8 - 10, 2025
Commercial UAV Expo 2025 at RAI Amsterdam Amsterdam Netherlands - Apr 8 - 11, 2025
Geospatial World Forum 2025 at Madrid Marriott Auditorium Madrid Spain - Apr 22 - 25, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise