3D Printing for Healthcare: R&D, Industry and Market 2014-2024

3.6.1 Dental Products Dominated the 3D Printed Products Market in 2012, But Will This Continue?
3.6.2 Medical Implants: Patient-Specific Orthopaedic and Cranio-maxillofacial Implants Are Produced Using 3D Printing Technology
3.6.2.1 The Driving and Restraining Factors Surrounding 3D Printed Medical Implants, 2013
3.6.3 Bioprinted Tissue: Commercial Launch Anticipated in 2014
3.6.4 Other Applications: Medical Modelling, Prototypes and Pharmaceuticals

4. The Leading National Markets for 3D Printing for Healthcare, 2014-2024

4.1 A Geographical Breakdown of 3D Printing Technology Manufacturers for the Healthcare Industry, 2012
4.2 The Leading National Markets for 3D Printing in Healthcare, 2012
4.3 The Leading National Markets: Comparison of Revenue and Market Share, 2018 and 2024
4.4 The Leading National Pharmaceutical Markets for 3D Printing for Healthcare: A Grouped Revenue Forecast, 2014-2024
4.5 The US Will Continue to be the Largest Consumer Throughout the Forecast Period
4.5.1 Pioneering Use of 3D Printed Medical Implants in the US
4.5.2 FDA Regulatory Requirements: Abridged Pathways Foster Innovation
4.6 The EU5 Account for 30% of the Market in 2012, But How Will This Change During the Forecast Period 2014-2024?
4.6.1 Germany Will Remain the Largest Market of the EU5 Throughout the Forecast Period
4.6.2 France: Strong Growth but a Decreasing Market Share
4.6.3 The UK: A Strong Network for 3D Printed Medical Implants Will Stimulate Sales of those Products
4.6.4 Italian Orthopaedic Device Manufacturers are Prominent Consumers of Arcam's AM Technology
4.6.5 Spain: the Smallest of the EU5 Will See the Highest Growth
4.7 Japan: Growth Will be Driven by Domestic as well as International Innovation
4.8 China: Domestic Innovation is Keeping Pace with the Western World
4.9 Brazil: A Rapidly Growing Dental Market Presents Opportunities for 3D Printing
4.10 The Indian Market is at an Early Stage
4.11 Will 3D Printing Penetrate the Russian Healthcare Market?

5. 3D Printing for Healthcare: Leading Organisations in the Market

5.1 Leading Organisations in the Industry, 2013-2014
5.2 Organisations in the Medical Implants Sector
5.2.1 Tissue Regeneration Systems: Commercialising 3D Printed Bioresorbable Skeletal Reconstruction Implants
5.2.2 Oxford Performance Materials: Selling 3D Printed Implants Since Late 2011
5.2.3 Within Technologies: A Manufacturer of Software for 3D Printing
5.2.3.1 Within Medical: A New Initiative Combining Medical Implant Design Software and a 3D Printing Manufacturing Program
5.2.3.2 The Future of Within Technologies in the Medical Field
5.2.4 C&A Tool: Manufacturing Parts for the Surgical, Orthopaedic, Implant and Tooling Fields
5.2.5 Tonrud Engineering: A Provider of DMSL Since November 2011
5.2.6 Alphaform AG's Two Business Segments Will Grow Synergistically
5.2.7 3T RPD Ltd: A UK-Based Additive Manufacturing Company
5.2.8 EOS: A Manufacturer of 3D Printers
5.2.9 Arcam AB is Seeing Rapid Growth in 2013
5.2.10 Xilloc Medical: Specialising in Patient-Specific Implants
5.2.11 LayerWise: A Specialist in Metal Additive Manufacturing
5.2.12 3D Systems: High Rates of Growth in the Healthcare Industry
5.2.13 Stratasys: Merged With Objet in December 2012
5.3 Organisations in the 3D Bioprinting Sector
5.3.1 Wake Forest Institute for Regenerative Medicine: Working to Engineer >30 Tissues and Organs Using 3D Printing
5.3.1.1 Timeline for Commercially Available Therapeutic Applications
5.3.1.2 Commercial Applications of the Technology in Drug Development
5.3.2 Organovo: An Early Stage Regenerative Medicine Company
5.4 Organisations in Other Industry Sectors
5.4.1 Aprecia Pharmaceuticals: A Unique Oral Drug Delivery System Produced by 3D Printing Technology
5.4.2 The Cronin Group, University of Glasgow: Working on the 3D Printing of Pharmaceuticals
5.4.3 EnvisionTEC Provides Seven 3D Printing Systems for a Variety of Applications in the Medical and Dental Industries
5.4.4 Materialise NV: 3D Printing Medical Models

6. 3D Printing for the Healthcare Industry: The R&D Pipeline, 2013-2014

6.1 R&D in the Field of Medical Implants
6.1.1 Improving Biocompatibility of 3D Printed Medical Implants with Vitamin B2
6.1.2 3D Printing Intervertebral Discs Could Look Forward to a Share of a $90bn Market
6.1.3 3D Printing of Bionic Organs with Enhanced Functionality
6.2 R&D in the Field of Bioengineering
6.2.1 3D Printing of Skin Grafts: In Hospitals Within 10 Years?
6.2.2 The Production of Implantable Cartilage Using 3D Printing
6.2.3 3D Printing Blood Vessels is a Step Towards the Fabrication of Organs
6.2.3.1 Work at the University of Pennsylvania and MIT
6.2.3.2 Work at Fraunhofer
6.2.4 3D Printing of Functioning Livers at Organovo
6.2.5 3D Printing of Replacement Ears for Reconstructive Surgery
6.2.6 3D Printing to Fabricate Artificial Heart Valves
6.2.7 3D Printing Miniature Spheres with a Lipid Bilayer: Mimicking the Membranes of Living Cells
6.3 R&D in Other Fields
6.3.1 The 3D Printing of Pharmaceuticals: The Potential to Improve Access to Pharmaceuticals in Remote Corners of the World?

7. Qualitative Analysis of the 3D Printing Industry for Healthcare, 2013-2014 Onwards

7.1 Strengths and Weaknesses of the 3D Printing Industry for Healthcare at the End of 2013
7.1.1 The Market is in a High Growth Phase
7.1.2 AM Has a Smaller Resource Footprint
7.1.3 Customised Implants are in High Demand
7.1.4 Producing Complex Shapes and Parts
7.1.5 With High Volume, the Technology is Inefficient
7.1.6 3D Printing Remains Expensive
7.1.7 The Impact of the Adoption of 3D Printing on Jobs in Medical Manufacturing Industries
7.2 Opportunities and Threats Facing the Industry and Market, 2014-2024
7.2.1 Uses of 3D Printing in the Healthcare Industry Expand
7.2.2 The Demand for Personalised Medicine Represents a Lucrative Opportunity
7.2.3 There Exists Much Governmental Investment in the Technologies
7.2.4 Opportunities in Post-Production Finishing
7.2.5 Threats Posed by Questions over Legal Responsibility and Rights
7.2.6 Threats Posed by Alternative Manufacturing Methods
7.3 The Social, Technological, Economic and Political Factors Influencing the 3D Printing Industry for Healthcare, 2014-2024
7.3.1 Social Influences on Market Trends
7.3.2 Technological Influences on Market Trends
7.3.3 Economic Influences on the Market
7.3.4 Political Influences on the Market

8. Research Interviews

8.1 Interview with Andy Middleton, General Manager, EMEA (Europe, Middle East and Africa), Stratasys
8.1.1 On Stratasys' Offerings for the Healthcare Industry
8.1.2 On the Demand for 3D Printing in Healthcare
8.1.3 On the Future of 3D Printing in the Healthcare Industry
8.2 Interview with Dr Lothar Koch, Head of Biofabrication Group in the Nanotechnology Department, Laser Zentrum Hannover
8.2.1 On Laser-Assisted BioPrinting
8.2.2 On the Uses of 3D Printed Tissue
8.2.3 On 3D Printed Tissue vs. Traditional In Vitro Models
8.2.4 On 3D Printed Tissue for Transplantation
8.2.5 On Research in the Field
8.2.6 On the Timeline for Commercial Availability
8.3 Interview with Michael Renard, Executive Vice President, Commercial Operations, Organovo
8.3.1 On the Applications for 3D Bioprinting
8.3.2 On the Commercial Prospects of the Technology
8.3.3 On Potential Factors That Could Inhibit Development
8.3.4 On the Timeline for the Use of Bioprinted Tissues in Therapy

9. Conclusions from Our Study

9.1 The 3D Printing Market for the Healthcare Industry: Technology vs. End Products, 2014-2024
9.2 3D Printed Products for the Healthcare Industry by Application: Comparison of Revenue, 2012, 2018 and 2024
9.3 The Leading National Markets for 3D Printing in the Healthcare Industry, 2014-2024
9.4 Trends in the Industry and Market
9.4.1 3D Printing Technology is Already Established in the Field of Dentistry
9.4.2 The Uptake of 3D Printed Orthopaedic Implants is Gathering Pace
9.4.3 An Increasing Focus on Bioprinting
9.4.4 Demand for Technology Corresponds With the Demand for Products

List of Tables

Table 1.1 Currency Exchange Rates
Table 2.1 The US Classification of Medical Devices
Table 2.2 The EU Classification of Medical Devices
Table 3.1 Breakdown of the Market by Technology and Products: Revenue ($m) and Market Share (%), 2012
Table 3.2 3D Printed Products for Healthcare by Application: Revenues ($m) and Market Shares (%), 2012
Table 3.3 3D Printing in the Healthcare Industry by Submarket: Revenue ($m) and Market Share (%) Forecasts, 2013-2024

« Previous Page 1 | 2 | 3 | 4  Next Page »
Featured Video
Latest Blog Posts
Sanjay GangalIndustry Predictions
by Sanjay Gangal
AECCafe Industry Predictions for 2025 – DGG
Jobs
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Principal Engineer for Autodesk at San Francisco, California
Senior Principal Software Engineer for Autodesk at San Francisco, California
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Sr. GIS Apps Product Engineer for ESRI at Portland, Oregon
Equipment Engineer, Raxium for Google at Fremont, California
Upcoming Events
Geospatial World Forum 2025 at Madrid Marriott Auditorium Madrid Spain - Apr 22 - 25, 2025
BI2025 - 13th Annual Building Innovation Conference at Ritz-Carlton Tysons Corner McLean VA - May 19 - 21, 2025
SIGGRAPH 2025 at Convention Centre Vancouver, British Columbia Canada - Aug 10 - 14, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise