Maxim High-Performance PMICs: Powering Next-Generation Consumer Applications

MAX77714 and MAX77752 deliver total power management for deep-learning SoCs, FPGAs and multimedia application processors at ultra-low power

SAN JOSE, Calif., July 24, 2018 — (PRNewswire) — With a pair of feature-rich, high-performance and scalable power-management ICs (PMICs) from Maxim Integrated Products, Inc. (NASDAQ: MXIM), designers of mobile systems can now maximize performance per watt while increasing system efficiency for computationally intensive deep-learning systems on chip (SoCs), FPGAs and application processors. The MAX77714 and MAX77752 address a broad spectrum of applications ranging from augmented reality/virtual reality (AR/VR), gaming, solid-state drives (SSDs), security and industrial internet of things (IIoT) to handheld devices such as cameras and home automation hubs. Architected to deliver numerous benefits, including consuming 40 percent less power than standard solutions, the PMICs extend battery life while providing the most compact form factor in the market.

High-performance power management ICs from Maxim Integrated reduce the size, power consumption and cost of next-generation designs for virtual reality/augmented reality, gaming, solid-state drives (SSDs), security, industrial internet of things (IIoT), cameras and home automation hubs.

Computational power is rising in consumer electronics as designers move toward higher performing application processors and SoCs for a diverse range of mobile devices. However, users expect their battery-operated, always-on electronics to run cool and for long periods of time. Designers face the challenge of reducing board space and component cost of these consumer devices while delivering high efficiency, high horsepower and flexible power sequencing.

Maxim's high-performance PMICs offer complete power management in single-chip solutions so that application processors can operate at peak levels and deliver a stable, high-quality user experience. The two PMICs also integrate multiple features, allowing designers to reduce the solution footprint and system cost.

MAX77714: High-Performance PMIC for Computationally Intensive Applications

The MAX77714 PMIC delivers a complete, efficient power-management solution in a compact package to enable multi-core processor-based systems to operate at maximum performance with greater than 90 percent efficiency at 3.6VIN, 1.1V OUT. With a 70-bump, 4.1mm x 3.25mm x 0.7mm WLP package, it enables thinner, smaller devices and extends battery life up to 40 percent compared to stand-alone solutions. It reduces design cycle time, component count, and bill of material (BOM) costs compared to discrete solutions by integrating 13 regulators, including 9 low-dropout linear regulators, real-time clock (RTC), backup battery charger, watchdog timer, flexible power sequencing and 8 general-purpose input/outputs (GPIOs).

MAX77752: High-Performance, Compact, Multi-Channel PMIC with Hot-Plugging Capabilities

The MAX77752 is a multi-channel, compact and integrated PMIC designed for applications with multiple power rails and hot-plugging capabilities. It improves efficiency up to 90 percent at 3.6VIN, 1.8VOUT for longer battery life and includes a flexible power sequencer (FPS) to allow hardware- or software-controlled power up. It reduces design cycle time, component count and BOM costs by integrating three buck regulators (with high-accuracy brownout comparators), one low-dropout linear regulator, two dedicated load switch controllers, one in-rush current limiter, two external regulators to enable outputs, voltage monitor for backup power control and a dedicated digital output resource for logic control. The MAX77752 comes in a compact 40-pin, 5mm x 5mm x 0.8mm, 0.4mm-pitch TQFN package.

Commentary

  • "As consumer electronics increasingly adopt higher performance processors to meet the demands of compute-heavy applications like augmented reality and machine learning, there is also a drive to improve power efficiency and reduce form factor," said Kevin Anderson, senior analyst, Power IC Research at IHS Markit. "High-performance, highly integrated PMICs play an important role for designers in this market, which we estimate will grow from $291 million in 2017 to $419 million in 2021."
  • "Today's consumer landscape is rapidly driving the integration of multi-core CPUs, APUs, GPUs, artificial neural network accelerators and machine-vision algorithms onto a compact solution. Maxim's newest PMICs are streamlined to address these very needs, providing scalable and configurable resources with gaming-level performance that efficiently power the world's fastest mobile processors," said Karthi Gopalan, director of business management for the Mobile Power Business Unit at Maxim Integrated.

Availability and Pricing

  • The MAX77714 is available for $2.75 (1000-up, FOB USA); the MAX77752 is available for $1.40 (1000-up, FOB USA); Both are available at Maxim's website and with select authorized distributors
  • The  MAX77714EVKIT# evaluation kit is available for $80; the MAX77752EVKIT# evaluation kit is available for $100

About Maxim Integrated

Maxim Integrated develops innovative analog and mixed-signal products and technologies to make systems smaller and smarter, with enhanced security and increased energy efficiency. We are empowering design innovation for our automotive, industrial, healthcare, mobile consumer and cloud data center customers to deliver industry-leading solutions that help change the world. Learn more at https://www.maximintegrated.com.

Contact:

Tom Murphy


408-601-3145


Thomas.Murphy@maximintegrated.com

 

Logo for Maxim Integrated Products Inc. (PRNewsfoto/Maxim Integrated)

Cision View original content with multimedia: http://www.prnewswire.com/news-releases/maxim-high-performance-pmics-powering-next-generation-consumer-applications-300685334.html

SOURCE Maxim Integrated Products, Inc.

Contact:
Company Name: Maxim Integrated Products, Inc.
Web: https://www.maximintegrated.com
Financial data for Maxim Integrated Products, Inc.

Featured Video
Latest Blog Posts
AdministratorIndustry Predictions
by Administrator
AECCafe Industry Predictions for 2025 – DGG
Sanjay GangalAECCafe Today
by Sanjay Gangal
AEC Industry Predictions for 2025 — vGIS
Jobs
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Senior Principal Software Engineer for Autodesk at San Francisco, California
Principal Engineer for Autodesk at San Francisco, California
Mechanical Engineer 3 for Lam Research at Fremont, California
Mechanical Engineer 2 for Lam Research at Fremont, California
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Upcoming Events
Consumer Electronics Show 2025 - CES 2025 at Las Vegas Convention Center Las Vegas NV - Jan 7 - 10, 2025
Commercial UAV Expo 2025 at Amsterdam Netherlands - Apr 8 - 10, 2025
Commercial UAV Expo 2025 at RAI Amsterdam Amsterdam Netherlands - Apr 8 - 11, 2025
Geospatial World Forum 2025 at Madrid Marriott Auditorium Madrid Spain - Apr 22 - 25, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise