Photogrammetry with Large-frame Sensors: Pix4Dmapper Pro is more than just a drone-mapping software

Jan 26, 2017 -- For professional photogrammetrists, the objective of mapping is not just to generate simple 2D orthomosaics and 3D visually-pleasant models, but to create cartography that provides accurate location and precise measurements. In Pix4Dmapper Pro, users can process large-frame images with an additional add-on. This add-on is for processing images larger than 55 megapixels. Metric camera users, UltraCam, for example, can enter pre-calibrated camera interior and exterior parameters in Pix4Dmapper Pro.
 
DSM and Orthomosaic generated from large-frame images,
with selective camera interiors and exteriors fixed
 
By choosing either to fix or to recompute parameters, it is more flexible and efficient to generate accurate cartography in a short time. Here are some useful features for professional photogrammetrists:
 
To Fix Selective Pre-calibrated Camera Interiors
Pix4Dmapper Pro supports the input of pre-calibrated camera interiors, such as focal length, principal point of autocollimation (PPA), and lens distortion coefficients, etc. The feature of choosing whether to fix or to recompute them is especially important for metric cameras whose interior parameters are pre-calibrated in labs. Those values should have more weight and not to be recomputed every time based on the image content.
 
To Fix Selective Camera Exteriors
 
One recent method for traditional photogrammetrists to avoid surveying ground control points for every project is direct georeferencing, giving the six accurate exterior orientations (x,y,z,omega,phi,kappa) to produce the surface model and orthomosaic.
 
*Direct georeferencing requires a one-time pre-project flight over the calibration field which will give us the shift in x, y, z direction from the GPS receiver and the rotation angles around x, y, z axes from the inertial measurement unit (IMU). These values will not change unless the camera is re-installed and so is the relative position and orientation.

The entire flight path can be computed by interpolating the mobile station locations received from the GPS receiver using higher-frequency IMU, and adjusted based on known base stations. Finally, locating the image triggering time along the entire path, based on GPS time, gives the location and orientation of each image.
 


Read the complete story ...
Featured Video
Latest Blog Posts
Sanjay GangalIndustry Predictions
by Sanjay Gangal
AECCafe Industry Predictions for 2025 – DGG
Jobs
Senior Principal Software Engineer for Autodesk at San Francisco, California
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Principal Engineer for Autodesk at San Francisco, California
Sr. GIS Apps Product Engineer for ESRI at Portland, Oregon
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Mechanical Engineer 2 for Lam Research at Fremont, California
Upcoming Events
Geospatial World Forum 2025 at Madrid Marriott Auditorium Madrid Spain - Apr 22 - 25, 2025
BI2025 - 13th Annual Building Innovation Conference at Ritz-Carlton Tysons Corner McLean VA - May 19 - 21, 2025
SIGGRAPH 2025 at Convention Centre Vancouver, British Columbia Canada - Aug 10 - 14, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise